Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Gen Virol ; 98(6): 1196-1208, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28613140

RESUMO

PB1-F2 is a viral protein encoded by influenza A viruses (IAVs). PB1-F2 is implicated in virulence by triggering immune cell apoptosis and enhancing inflammation. To obtain an insight into the molecular mechanisms of PB1-F2-mediated virulence, we used the yeast two-hybrid approach to find new PB1-F2 cellular interactors. This allowed us to identify calcium-binding and coiled-coil domain 2 (CALCOCO2, also known as NDP52) as a binding partner of PB1-F2. Binding of PB1-F2 to CALCOCO2 was confirmed by pull-down. Surface plasmon resonance binding experiments enabled us to estimate the dissociation constant (Kd) of the two partners to be around 20 nM. Using bioinformatics tools, we designed a CALCOCO2 interaction map based on previous knowledge and showed a strong connection between this protein and the type I interferon production pathways and the I-κB kinase/NF-κB signalling pathway. NF-κB reporter assays in which CALCOCO2, MAVS and PB1-F2 were co-expressed showed a cooperation of these three proteins to increase the inflammatory response. By contrast, PB1-F2 inhibits the TBK1-dependent activation of an ISRE reporter plasmid. We also demonstrated that the signal transducer TRAF6 is implicated in the enhancement of NF-κB activity mediated by PB1-F2/CALCOCO2 binding. Altogether, this report provides evidence of an interaction link between PB1-F2 and human proteins, and allows a better understanding of the involvement of PB1-F2 in the pathologic process mediated by IAV.


Assuntos
Interações Hospedeiro-Patógeno , Imunidade Inata , Vírus da Influenza A/imunologia , Vírus da Influenza A/patogenicidade , Proteínas Nucleares/metabolismo , Proteínas Virais/metabolismo , Fatores de Virulência/metabolismo , Biologia Computacional , Humanos , Cinética , Ligação Proteica , Mapeamento de Interação de Proteínas , Ressonância de Plasmônio de Superfície , Técnicas do Sistema de Duplo-Híbrido
3.
J Gen Virol ; 85(Pt 8): 2231-2236, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15269363

RESUMO

The capsid of birnaviruses contains two proteins, VP2 and VP3, which derive from the processing of a large polyprotein, NH(2)-pVP2-VP4-VP3-COOH. The proteolytic cascade involved in processing the polyprotein, and in the final maturation of pVP2 (the precursor of VP2), has recently been shown to generate VP2 and four structural peptides in infectious bursal disease virus and blotched snakehead virus. The presence of peptides in infectious pancreatic necrosis virus particles was investigated using mass spectrometry and N-terminal sequencing of virus particles. Three peptides deriving from the C terminus of pVP2 (residues 443-486, 487-495 and 496-508 of the polyprotein) and 14 additional peptides produced by further processing of peptides [443-486] and [496-508] were identified. These results indicate that the presence of several virus-encoded peptides in the virions is a hallmark of birnaviruses.


Assuntos
Proteínas do Capsídeo/análise , Vírus da Necrose Pancreática Infecciosa/química , Fragmentos de Peptídeos/análise , Precursores de Proteínas/análise , Vírion/química , Sequência de Aminoácidos , Dados de Sequência Molecular
4.
J Gen Virol ; 85(Pt 6): 1643-1653, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15166449

RESUMO

The RNA-dependent RNA polymerase complex of respiratory syncytial virus (RSV) is composed of the large polymerase (L), the phosphoprotein (P), the nucleocapsid protein (N) and the co-factors M2-1 and M2-2. The P protein plays a central role within the replicase-transcriptase machinery, forming homo-oligomers and complexes with N and L. In order to study P-P and N-P complexes, and the role of P phosphorylation in these interactions, the human RSV P and N proteins were expressed in E. coli as His-tagged or GST-fusion proteins. The non-phosphorylated status of recombinant P protein was established by mass spectrometry. GST-P and GST-N fusion proteins were able to interact with RSV proteins extracted from infected cells in a GST pull-down assay. When co-expressed in bacteria, GST-P and His-P were co-purified by glutathione-Sepharose affinity, showing that the RSV P protein can form oligomers within bacteria. This result was confirmed by chemical cross-linking experiments and gel filtration studies. The P oligomerization domain was investigated by a GST pull-down assay using a series of P deletion constructs. This domain was mapped to a small region situated in the central part of P (aa 120-150), which localized in a computer-predicted coiled-coil domain. When co-expressed in bacteria, RSV N and P proteins formed a soluble complex that prevented non-specific binding of N to bacterial RNA. Therefore, RSV P protein phosphorylation is not required for the formation of P-P and N-P complexes, and P controls the RNA binding activity of N.


Assuntos
Vírus Sinciciais Respiratórios/química , Proteínas Virais/química , Sequência de Aminoácidos , Animais , Sequência de Bases , Escherichia coli/genética , Dados de Sequência Molecular , Fosforilação , RNA Bacteriano/análise , Coelhos , Proteínas Recombinantes de Fusão/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...